skip to main content


Search for: All records

Creators/Authors contains: "Santisteban, Maria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Genomics Education Partnership (GEP; https://thegep.org) began as a consortium of 16 faculty in 2006 with a goal of providing students with Course-based Undergraduate Research Experiences (CUREs) in genomics. Today, GEP has over 200 faculty from more than 180 institutions and engages more than 3,900 undergraduates in authentic genomics research annually. These faculty joined and continued to participate in the GEP for many reasons, including the collaborative nature of the research, the well-established infrastructure, and the supportive network of like-minded colleagues. Faculty implement GEP materials in diverse settings ? ranging from short modules (2-8 weeks) within a course, to a standalone full-semester course, to independent student research. GEP students show significant gains in scientific knowledge and attitudes toward science. In addition to improving their understanding of the research process and how new knowledge is created in the field, GEP students acquire desirable and transferable skills essential for future participation in the workforce, such as problem solving, independence, application of knowledge, team-work, and collaboration. Students also gain competence in the use of computational algorithms to analyze large biological datasets ? thereby preparing students for a growing need of a workforce trained at applying statistics and computational tools to analyze large datasets. In addition, GEP students and their faculty mentors are eligible to be co-authors on the scientific publications that are based on their work. In this workshop, we will provide an overview of the GEP community, a hands-on guided tour of our introductory curriculum aimed to teach gene structure, transcription, translation, and processing, and a step-by-step walkthrough that illustrates the protocol for annotating a protein-coding gene in Drosophila. Participants will receive information on how to join the GEP community and receive training and resources to enable their implementations. 
    more » « less
  2. Marshall, Pamela Ann (Ed.)
    ABSTRACT The initial phase of the COVID-19 pandemic changed the nature of course delivery from largely in-person to exclusively remote, thus disrupting the well-established pedagogy of the Genomics Education Partnership (GEP; https://www.thegep.org ). However, our web-based research adapted well to the remote learning environment. As usual, students who engaged in the GEP’s Course-based Undergraduate Research Experience (CURE) received digital projects based on genetic information within assembled Drosophila genomes. Adaptations for remote implementation included moving new member faculty training and peer Teaching Assistant office hours from in-person to online. Surprisingly, our faculty membership significantly increased and, hence, the number of supported students. Furthermore, despite the mostly virtual instruction of the 2020–2021 academic year, there was no significant decline in student learning nor attitudes. Based on successfully expanding the GEP CURE within a virtual learning environment, we provide four strategic lessons we infer toward democratizing science education. First, it appears that increasing access to scientific research and professional development opportunities by supporting virtual, cost-free attendance at national conferences attracts more faculty members to educational initiatives. Second, we observed that transitioning new member training to an online platform removed geographical barriers, reducing time and travel demands, and increased access for diverse faculty to join. Third, developing a Virtual Teaching Assistant program increased the availability of peer support, thereby improving the opportunities for student success. Finally, increasing access to web-based technology is critical for providing equitable opportunities for marginalized students to fully participate in research courses. Online CUREs have great potential for democratizing science education. 
    more » « less